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Resistive wall impedance and tune shift for a chamber with a finite thickness

Yoshihiro Shobuda and Kaoru Yokoya
KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
~Received 26 January 2002; revised manuscript received 10 May 2002; published 6 November 2002!

Since the resistive wall impedance for a beam pipe of a nonround cross section depends on the coordinates
of a witness particle, the witness particle receives an incoherent tune shift. When the expression for the
impedance of an infinitely thick chamber is applied to the calculation of this tune shift, it becomes infinite. We
have derived the resistive wall impedance for a chamber with a finite thickness and calculated the tune shift.
There is no ambiguity in this expression for the tune shift, because it is automatically finite.
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I. INTRODUCTION

Resistive wall impedances have been studied in acce
tor physics. Gluckstern, van Zeijts, and Zotter~GZZ! derived
formulas of impedances for the case of elliptical and rect
gular cross section when the position of the source part
and the witness particle are the same, and the thickness o
beam pipe is infinite@1#. Yokoya gave a computer algorithm
to calculate the impedances for a general cross section w
the thickness of the beam pipe is infinite@2#.

It is known that a beam pipe of nonround cross sect
causes an incoherent tune shift, because the resistive
impedance due to the source particle depends not only on
coordinates of the source particle, but also on those of
witness particle@1,2#. However, this tune shift becomes infi
nite when the impedances for a chamber with an infin
thickness are applied to its calculation, because the resis
wall wake function is proportional to 1/As where s is the
distance between the source particle and the witness par
In previous studies, the tune shift was calculated by introd
ing an artificial cutoff@3,4#. This kind of cutoff causes an
ambiguity in the calculation of the tune shift. It is possible
avoid this kind of infinity by considering the thickness of th
beam pipe. The electromagnetic fields leak out when
thickness of the beam pipe is finite. Since the skin depth
the beam pipe material is proportional to (1/Ak) wherek is a
wave number, this leak actually occurs on a large time sc
For this case, an important parameter is the thickness of
beam pipe instead of the skin depth.

It is important to consider the effect of the thickness of t
beam pipe, and to understand how the divergence of the
shift can be resolved. In Sec. II, we show how we include
effect of the thickness of the chamber to the resistive imp
ances. In Sec. III, we explicitly show the impedances and
tune shift. In Sec. IV, we apply our theory to KEKB electro
ring and compare the experimental data with our theory
summary is given in Sec. V.

II. DERIVATION OF IMPEDANCES FOR A CHAMBER
WITH A FINITE THICKNESS

We assume throughout that the beam pipe is uniform l
gitudinally and the beam is ultrarelativistic. Since all of t
field quantities which are effective on the wake field a
proportional to exp@ jk(ct2z)# wherec is the velocity of light,
1063-651X/2002/66~5!/056501~6!/$20.00 66 0565
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we omit this factor to define the fields.
We denote byEz the longitudinal component of the elec

tric field generated by a source particle. Once the field on
inner surface of the pipe is known,Ez can be calculated by
the Kirchhoff integral formula@2,5#,

Ez~r !5 R @“'8 Ez~r 8!G~r ,r 8!2Ez~r 8!“'8 G~r ,r 8!#•nds8,

~1!

wherer is the integral along the boundary surface, the pri
denotes quantities at the boundary,n is an outwardly directed
normal to the boundary surface and“' is the two-
dimensional gradient. The functionG is the Green function
satisfying

D'G~r ,r 8!52d~r2r 8!. ~2!

Since the Kirchhoff integral is valid for any Green functio
satisfying Eq.~2!, we choose the function with its valu
equal to zero at the boundary. By using this Green functi
we can calculate the longitudinal impedance when we o
know Ez at the boundary.

WhenEz is obtained, the transverse forceF' is calculated
using the Panofsky-Wenzel theorem@6#,

F'~x,y!52
1

jk
“'Ez~x,y!. ~3!

Thus, it is necessary to knowEz at the inner surface of the
chamber for the case of a finite chamber thickness. The
gential ~azimuthal! magnetic component (Ht) is calculated
by

Z0Ht5En52“'F~x,y!, ~4!

D'F~x,y!52Z0d~r2r1!, ~5!

whereEn is the normal component of the electric field,Z0 is
the impedance of free space andr1 is the transverse coordi
nate of the source particle. In order to obtainEz at the bound-
ary, we must find the relation betweenEz andHt along the
boundary when the thickness of the chamber is finite.

We consider the case when the radius of the beam pip
sufficiently larger than the skin depth. In order to find t
relation betweenEz andHt at the boundary, it is sufficient to
©2002 The American Physical Society01-1
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consider the one-dimensional problem. Consider a wall w
thicknessd ~see Fig. 1!. We call (x,0) region I, (0,x
,d) region II, and (d,x,`) region III. We assume that th
beam runs in region I. The beam creates fields on the in
surface of the wall (x50), which are written asEz(0) and
Ht(0). In region II, Maxwell equations are written as fo
lows:

jkHt~x!5~s1 jkce0!En~x!,

e0

]En~x!

]x
2 jke0Ez~x!50,

2
]Ez~x!

]x
2 jkEn~x!52 jkcm0Ht~x!,

]Ht~x!

]x
5~s1 jkce0!Ez~x!. ~6!

According to Eq.~6!, Ez(x) must satisfy

]2Ez~x!

]x2
2

2 j

d2
Ez~x!50, ~7!

whered5A2r0 /k andr051/m0cs (r0.10210 m for a cop-
per chamber at room temperature!. The solutions for region
II are

Ez~x!5c1eA2 jx/d1c2e2A2 jx/d, ~8!

Ht~x!5
A2 j

d

11 jkr0

jkZ0
~c1eA2 jx/d2c2e2A2 jx/d!. ~9!

The boundary conditions are as follows:

Ez~0!5c11c2 , ~10!

05c1eA2 jd/d1c2e2A2 jd/d, ~11!

Ht~0!5
A2 j

d

11 jkr0

jkZ0
~c12c2!, ~12!

FIG. 1. A wall with its thicknessd. The beam runs in region
I.
05650
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which give the following relations:

Ez~0!.2kdZ0

11 j

2
GHt~0!, ~13!

G5
eA2 jd/d2e2A2 jd/d

eA2 jd/d1e2A2 jd/d
, ~14!

in normal applications wherekr0!1. For d→`, Eq. ~14!
reproduces the relation

Ez~0!.2kdZ0

11 j

2
Ht~0!, ~15!

which is already known@1#. We expect that Eq.~13!, which
is obtained in the one-dimensional case, is almost satis
for the general beam-pipe case when the radius of the b
pipe is sufficiently larger than the skin depth@but, the thick-
ness of the chamber~d! may be small#.

In order to confirm that this expectation is plausible, w
can consider a simple example for the two-dimension c
where the cross section of the pipe is round~the radius of the
pipe isb0 and the thickness of the chamber isd). This prob-
lem was already solved by Chao@6#. The boundary condi-
tions also give Eq.~13! whenb0@d andkr0!1. These situ-
ations suggest that Eq.~13! is almost satisfied for the genera
beam-pipe case, when the skin depth is sufficiently sma
than the radius of the beam pipe.

III. WAKE FUNCTIONS AND TUNE SHIFT

According to Eqs.~1! and ~13!, we find thatEz for a
chamber with a finite thickness is that with an infinite thic
ness multiplied by theG factor, becauseHt does not depend
on the properties of wall materials. We obtain

Ez~x,y!52kd~11 j !
eA2 jd/d2e2A2 jd/d

eA2 jd/d1e2A2 jd/d

Z0

2pb3 S b2

2
D0

1D1xx1x1D1yy1y1D2xy

x22y2

2
1••• D ,

~16!

F'~x,y!5
d~11 j !

j

eA2 jd/d2e2A2 jd/d

eA2 jd/d1e2A2 jd/d

Z0

2pb3
D' ,

D'5H S D1xx1

D1yy1
D 1D2xyS x

2yD 1•••J , ~17!

where 2b is a typical vertical size of the cross section of t
chamber; the analytic form of theD ’s is given in the Appen-
dix for elliptic and rectangular cases. (D' is relevant to the
tune shift. D1x , D1y , and D2xy are equal to]Wx /]xs ,
]Wy /]ys , and]Wx /]xw in Fig. 8 of Ref.@2#, respectively.
We should notice thatD2xy vanishes when the cross sectio
of the chamber is round.!
1-2
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Here we take the inverse Fourier transformation ofF' to
obtain the transverse wake functionW' per unit length,

W'~s!5E
2`

`

dkejks
c

2p

Z0

2pb3

3D'

d~11 j !

j

eA2 jd/d2e2A2 jd/d

eA2 jd/d1e2A2 jd/d
. ~18!

The integrand in Eq.~18! does not have a cut, but simp
poles at

k5kn5 j
r0p2~2n11!2

4d2
~n50,1,2, . . . !. ~19!

By closing the contour by the upper semicircle fors.0,

W'~s!5
cZ0

2p2b3
D' j p (

n50

`

Residue~k5kn!. ~20!

Thus, we obtain

W'~s!52
cZ0r0

pb3

1

d F (
n50

`

e2(p2r0s/d2)(n11/2)2GD' . ~21!

Since the summation overn can be replaced by integratio
for the caser0s/d2!1 ~i.e., d!d), we can reproduce@2#,

W'~s!5
cZ0Ar0

pApb3

1

As
D' . ~22!

Comparing the asymptotic region ofs in both Eqs.~21! and
~22!, we find that Eq.~21! deviates from 1/As in the region
s*2d2/(p2r0), and the wake function becomes expone
tially damped~see Fig. 2!. This is consistent with our othe

FIG. 2. Thes dependence of the transverse wake functionW'

where W0[cZ0r0 /(b3d)D' . corresponds to Eq.~21!, and
- - - to Eq. ~22!.
05650
-

condition,d!b ~i.e., s&b2/2r0).
Here we divideW'(s) into the part proportional to the

coordinate of the source particle (x1 or y1) and the part
proportional to the coordinate of the witness particle (x or
y), and write

W'~s!5S W1x~s!x11W2~s!x

W1y~s!y12W2~s!y
D . ~23!

W1x,y(s) cause a coherent tune shift andW2(s) an incoher-
ent tune shift. Since the equations of motion are

d2xn~s!

ds2
1Kx~s!xn~s!5(

m,k

Q

E
@W1x„~n2m1kN!cDt…

3xm~s2kL!1W2„~n2m

1kN!cDt…xn~s!#, ~24!

d2yn~s!

ds2
1Ky~s!yn~s!5(

m,k

Q

E
@W1y„~n2m1kN!cDt…

3ym~s2kL!2W2„~n2m

1kN!cDt…yn~s!#, ~25!

where Kx,y are focusing forces,Q ~C! is the charge per
bunch,E is the electron~or, positron! energy~eV!, cDt is the
distance between bunches,L is the circumference of the ring
andN is the total number of bunches. The coherent tune s
(ncoh,x,y

(m) ) for mth mode and the incoherent tune sh
(dn inc,x,y) are given by

dncoh,x,y
(m) 52

L^bx,y&
4p (

k51

`
Q

E
W1x,y~kL!ej 2pkDnx,y

(m)

3
sinpDnx,y

(m)

sin
pDnx,y

(m)

N

ej pDnx,y
(m)(121/N)

52
L^bx,y&

4p

Z0I 0

E

cDtAr0

pApb3
D1x,y(

k51

`
2Apr0

d

3 (
n50

`

e2(p2r0kL/d2)(n11/2)21 j 2pkDnx,y
(m)

3
sinpDnx,y

(m)

sin
pDnx,y

(m)

N

ej pDnx,y
(m)(121/N), ~26!
1-3
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dn inc,x,y57
L^bx,y&

4p (
k51

`
Q

E
W2~kcDt !

57
L^bx,y&

2p2b3

Z0I 0

E

cDtr0

d

3D2xy(
n50

`
1

e(p2r0cDt/d2)(n11/2)221
, ~27!

where Dnx,y
(m)5nx,y2m, nx,y are tunes,I 0 ~A! is the total

current,^bx,y& are average values ofb functions around the
ring, and the upper ~lower! sign corresponds to
dn inc,x (dn inc,y).

SincepDnx,y
(m)!1, p2r0L/d2!1, andp2r0cDt/d2!1 in

normal applications, Eqs.~26! and ~27! become

dncoh,x,y
(m) .2

L^bx,y&
4p

Z0I 0

E

LAr0

pApb3A2L
D1x,y

3 (
k51

` A2

kH cosF2pDnx,y
(m)S k1

1

2D G
1 j sinF2pDnx,y

(m)S k1
1

2D G J , ~28!

dn inc,x,y.7D2xy

L^bx,y&
4p

Z0I 0

E

1

pb3
d, ~29!

where we have replaced the summation overn by an integral
in Eq. ~26! and used(n50

` 1/(n11/2)25p2/2 in Eq. ~27!.
Here we should notice that the coherent tune shift is au
matically finite even in the limitd→` and does not depen
on d even if we use Eq.~26!. On the other hand, the inco
herent tune shift is infinite ford→`. Thus, we usually cal-
culate the incoherent tune shift introducing a cutoff (NL) in
the number of bunches when we use Eq.~22!. The tune shift
is then written as

dn inc,x,y57D2xy

L^bx,y&
4p

Z0I 0

E

1

pb3 (
j 51

NL Ar0cDt

p j
.

~30!

We can evaluate the effective cutoff. According to Eqs.~29!
and ~30!, we obtain

cDtNL.
pd2

4r0
[cTmax. ~31!

Equation~31! can be interpreted in terms of the skin dep
i.e., one should getkmin from

Ap

2
d5d~kmin!, ~32!

and definecTmax[1/kmin .
05650
-
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IV. APPLICATION

Let us compare experimental results at KEKB electr
ring with our theory. In KEKB, parameters are given bynx
544.514, ny541.580, ^bx,y&.11.0 m, L53016 m, E58
3109 eV, d5631023 m, a55231023 m, and b525
31023 m (a andb are defined in the Appendix!. In KEKB,
Ieiri measured the tune shift and gotdnx /dI0umeas
50.026/A and dny /dI0umeas520.037/A @7#. Recently, a
more precise measurement was done@8#. The tune-shift de-
pendence was fitted by

nxumeas522.3403I b10.028 063I 010.5195, ~33!

nyumeas5217.763I b20.013 833I 010.6045, ~34!

where I b ~A! is the bunch current. Following Zimmerman
@4#, let us separate the tune shift into the coherent part
the incoherent part as follows:

dnx

dI0
U

meas

50.5
dncoh,r

dI0
1

dn inc,x

dI0
, ~35!

dny

dI0
U

meas

50.8
dncoh,r

dI0
1

dn inc,y

dI0
. ~36!

Heredncoh,r /dI0 is the coherent tune shift for a round cham
ber. The numerical factors come from those for the resis
wake ~Fig. 8 of Ref.@2# for (a2b)/(a1b).0.35). We ex-
pect a similar ratio with some uncertainties even if the r
evant wake is not of resistive wall type. From the data
obtain

dncoh,r

dI0
.0.010 95/A,

dn inc,x,y

dI0
.60.022 59/A. ~37!

Using our theory,Tmax.1.9 ms. According to Eqs.~28!
and ~29!, the tune shift is given by

dncoh,x

dI0
.0.000 016/A,

dncoh,y

dI0
.0.000 148/A,

dn inc,x,y

dI0
.60.0060/A. ~38!

We cannot explain the coherent tune shift by a resist
wake. We should consider the other sources of impedan
For the incoherent tune shift, our value is about four tim
smaller than the data@Eq. ~37!#. This discrepancy is signifi-
cant even if we take into account the uncertainty of the
herent part. In our case, the effect of the radiation dampin
negligible, because the damping time~46 ms! is much larger
thanTmax. The reason of the discrepancy may be~1! other
sources of impedances,~2! the effects of materials outsid
the chamber. Since the observation showed that the tune
is proportional to the total current rather than to the bun
current, the responsible wake has to be a long range w
but does not seem to be of narrow resonance type. Fur
the nonround cross section must be related to this wa
because the sign of the tune shift is opposite forx andy. We
1-4
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think that case~1! is impossible, therefore, we should co
sider the possibility of~2!, because the fields leak out of th
chamber on a large time scale. The next step will be to c
sider the effects of these components outside the chamb

V. SUMMARY

Resistive wall impedances with a finite thickness can
obtained by multiplying theG factor by impedances with
infinite thickness under the approximation that the size of
chamber is sufficiently larger than a skin depth. This tra
verse wake function becomes exponentially damped fos
.2d2/p2r0 rather than falling like 1/As. The expression for
an incoherent tune shift is automatically finite by using t
impedance. Thus, there is no ambiguity to evaluate the t
shift. The reason why the divergence of the tune shift
resolved, is that the physically important parameter is
thickness of the beam pipe instead of the skin depth fo
05650
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long time scale. By reducing the thickness of the chamb
we can reduce the tune shift linearly.

In this paper, we also try to explain the incoherent tu
shift which is observed in KEKB. Our value is four time
smaller than the experimental data. This situation sugg
that we have to consider the effect of components that e
outside the chamber: for example, magnets. The next
will be to consider the effects of these components to
tune shift.

ACKNOWLEDGMENT

The authors thank Dr. T. Ieiri, Dr. R. Nagaoka, Dr.
Zimmermann, Dr. K. Oide, Dr. T. Nakamura, and Dr. K. Sa
for discussions. One of the authors~Y.S.! gives thanks for the
financial support of Japan Society of the Promotion of S
ence.
the cross
n is
APPENDIX: D FUNCTIONS

Here, we denote the size of a cross section of a chamber as follows. The upper value holds for the case where
section is elliptic, its major axis is 2a and minor axis is 2b; the lower value holds for the case where the cross sectio
rectangular, its boundaries are given byx56a andy56b:

D055
G0~u0!5

sinhu0

2p E
0

2p

dv
Q0

2~v !

Asinh2u01sin2v
for elliptic case

F0S b

aD5p (
m51,odd S 1

cosh2
mpa

2b

1
b

a

1

cosh2
mpb

2a
D for rectangular case,

D1x55
G1x~u0!5

sinh3u0

4p E
0

2p

dv
Q1x

2 ~v !

Asinh2u01sin2v
for elliptic case,

F1xS b

aD5
p3

8 S (
m51,odd

m2

sinh2
mpa

2b

1 (
m52,even

b3m2

a3 cosh2
mpb

2a
D for rectangular case,

D1y55
G1y~u0!5

sinh3u0

4p E
0

2p

dv
Q1y

2 ~v !

Asinh2u01sin2v
for elliptic case

F1yS b

aD5
p3

8 S (
m51,odd

b3m2

a3sinh2
mpa

2b

1 (
m52,even

m2

cosh2
mpb

2a
D for rectangular case,

D2xy55
sinh3u0

4p E
0

2p

dv
Q0~v !Q2xy~v !

Asinh2u01sin2v
for elliptic case

p3

8 (
m51,odd S m2

cosh2
mpa

2b

2
b3m2

a3 cosh2
mpb

2a
D for rectangular case,

~A1!

where
1-5
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Q0~v !5112 (
m51

`

~21!m
cos 2mv

cosh 2mu0
, Q1x~v !52 (

m51

`

~21!m~2m11!
cos~2m11!v

cosh~2m11!u0
,

Q1y~v !52 (
m51

`

~21!m~2m11!
sin~2m11!v

sinh~2m11!u0
, Q2xy~v !528 (

m51

`

~21!m
m2 cos 2mv
cosh 2mu0

,

a5 f coshu0 , b5 f sinhu0 for elliptic case. ~A2!

FunctionsG0,1x,1y(u0), F0,1x,1y(l), andQ0,1x,1y(v) are calculated by GZZ@1#.
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